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Abstract

Public goods games are frequently used to model strategic aspects of social
dilemmas and to understand the evolution of cooperative behaviour among mem-
bers of a group. While providing a baseline case, a (local) public goods model
implies an equal sharing of returns. This appears an unsatisfying modelling choice
in contexts where contributors are heterogeneous and returns can be divided freely.
Furthermore, it is intrinsically linked to the negative effect of inequality on coopera-
tion, which is observed both theoretically and experimentally. To better understand
the link between inequality and cooperation when returns can be shared flexibly, we
characterise sharing behaviour that maximises contributions in an infinitely repeated
voluntary contribution game, where players differ in both their endowments as well
as the productivities of their contributions. In sharp contrast to egalitarian sharing,
we find that endowment inequality makes cooperation easier to sustain when returns
can be shared unequally. Maybe surprisingly, this qualitative relation between en-
dowment inequality and cooperation is independent of players’ productivities. We
derive a unique sharing rule as a function of productivities and endowments that is
weakly superior to all other sharing rules. This rule generically departs from both
equal as well as proportional sharing. If inequality is high, for example, individ-
uals with the highest endowment need to be compensated more in absolute terms,
but their relative share may be significantly less than their proportional contribu-
tion. Our analytical findings are qualitatively supported by numerical simulations of
simple evolutionary learning dynamics.
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1 Introduction

Social and economic life is rich in examples of social dilemmas; situations where cooperation among

several individuals or entities is required to successfully complete a task but there is a tension between the

welfare maximising outcome and individual incentives. Facilitating effective teamwork is a key objective

for many companies, cooperation between different countries is required to tackle complex problems like

climate change or the decline in biodiversity, collaboration among different researchers is essential for

scientific progress, and success in many sporting competitions relies not just on fielding a team with the

strongest individuals but one that works in unison. In such joint tasks, equal division seems an ideal

scenario: the division rule is simple, no information about inputs is required, and allocations are envy

free. In the case of hunter-gatherers, equal prey sharing guarantees the same amount of food and, hence,

survival chance to everyone. However, Nature is rich in examples where goods are not shared equally but

according to different rules: public-goods producers in cancer cells develop more efficient mechanisms

of the good consumption (Li and Thirumalai, 2019), successful hunters gain a larger share of the prey in

some hunter-gatherer communities (Gurven, 2004), and not all members of a sports team are remunerated

equally. Yet, in many evolutionary or repeated interaction models, it is explicitly or implicitly assumed

that returns are divided equally among members. For instance, modelling these interactions as a (local)

public goods game necessarily corresponds to an equal sharing of the good, as all participants receive

the same return. As is shown in many experiments, such egalitarian sharing can lead to an increased

incentive to free ride and a breakdown of cooperation (Dal Bó and Fréchette, 2018).

At the root of this issue lies the inequality or ‘heterogeneity’ of contributors. Equal sharing of rewards

seems innocuous if all collaborators are identical. Yet, inequality is a general feature of human societies.

Team members don’t usually have identical skill sets, experience, or even opportunity cost, countries

vary in their economic capabilities, and athletes not only differ in skills, but also their bargaining power.

Compensating individuals equally in spite of differences in the magnitude and quality of contributions

seems intuitively unfair and studies have systematically confirmed the tension between inequality and co-

operation. For instance, Hauser et al. (2019) recently highlighted the decline in cooperation that comes

with endowment inequality in voluntary contribution games; both in a classic repeated game as well as an

evolutionary setting. In social dilemmas with equal sharing, cooperation becomes harder to sustain the

more unequal players are. High inequality in wealth or productivity can render cooperation impossible,

even with perfectly patient individuals. When inequality becomes sufficiently extreme, the share ob-

tained under equal sharing can no longer sufficiently compensate the largest contributors. Nevertheless,

despite obvious inequalities, cooperation is widely observed in practice. It thus appears intuitive that re-

laxing the equal-sharing constraint might somewhat alleviate the issues caused by inequality. However, it

is not obvious how inequality and unequal sharing interact. For instance, if rewards can be shared freely,

how does inequality affect the ability of individuals to cooperate? How should rewards be shared to

maximise cooperation? The focus of this study thus lies on analysing how heterogeneity of individuals,

and the possibility to share rewards unequally, jointly affect cooperation in social dilemmas.
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We study the effects of heterogeneity in a simple n-player, infinitely repeated game. In every period,

players simultaneously decide how much of their endowment they contribute to a publicly produced

good. The welfare maximum is reached if all players contribute their entire endowments. Players’

individual payoffs consist of their retained endowment as well as their share in the jointly produced good.

The relative share each player obtains is fixed, publicly known, and independent of inputs. This implies

that sharing rules are committed but individual contributions are not verifiable. Players can differ in their

endowment and the productivity of their contributions. In an extension, differences in outside options

are also considered. Consistent with many of the described applications, players do not have access to

explicit punishment devices but can enforce cooperation only through potential (future) reductions in

their own contributions. To characterise the limits of cooperation, we focus on what is known as a ‘grim-

trigger strategy’, where deviations are punished permanently and as harshly as individually rational. In

the game considered here, this is without loss of generality. A schematic representation of the model

can be found in Figure 1. Our main goal is to characterise the (optimal) sharing rule that can sustain full

cooperation and analyse its relation with inequality. We further examine the evolution of cooperation

under introspection dynamics from Hauser et al. (2019) and compare this qualitatively to the derived

rule.

Figure 1: (a) A schematic representation of the setup. Heterogeneous players (in this case, unequal in their
endowments) contribute to the joint project. (b) Under egalitarian sharing, each individual receives 1/3 of the
project output independent of their contribution. (c) Under proportional sharing rules, individuals with larger
contributions receive higher shares. (d) However, proportional sharing might result in cooperation unravelling due
to individual incentives. Hence, we want to identify a sharing rule that sustains cooperation at equilibrium.

In line with the previously outlined, intuitive reasoning, we show that unequal sharing generally makes
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cooperation easier to sustain, in the sense that it allows for cooperation in equilibrium for a larger range of

discount factors. However, maybe surprisingly and to the contrary of the conclusions drawn under equal

sharing, we show that cooperation becomes easier to sustain when endowments are more unequal. For

instance, even if all contributors are equally productive, endowment inequality facilitates cooperation.

This implies that if individuals can split their endowment across two identical projects, the intuitive

approach of all individuals splitting their contributions equally across projects is not the approach most

conducive to cooperation. It is also shown that, unlike under equal sharing, the higher the inequality in

(potential) maximal contributions, the lower the required discount factor that sustains full cooperation.

Furthermore, this effect is not linked to productivities. As in the equal sharing case, cooperation benefits

if inequality in endowments and productivities are aligned, meaning that the richest players have the

highest productivity. However, this is not a necessary condition under unequal sharing. Inequality in

endowments can benefit cooperation even if the potentially largest contributor is the least productive.

We characterise the conditions an optimal sharing rule needs to fulfil. For a generic set of parameters,

such a rule is not unique, which leaves room for bargaining among contributors. However, we derive

a sharing rule that sustains full cooperation for a lower discount factor than any other rule. It is in this

sense (weakly) superior to all other sharing rules. Furthermore, at the lowest discount factor that sustain

cooperation, this is the only sharing rule that sustains cooperation. We furthermore present a simple way

to jointly derive this optimal rule and the corresponding minimum discount factor.

One striking implication of our results is that individuals with the highest endowment need to be com-

pensated proportionally less than individuals with smaller contributions. The optimal sharing rule thus

also deviates from proportional sharing rules where players are compensated according to their relative

contributions (Moulin, 2002). Furthermore, higher productivity decreases the minimum share a player

needs to be guaranteed to contribute. These findings are qualitatively robust to allowing for players to

have heterogeneous outside options. That is, rather than contributing to the joint project, players can

invest in their personal project with different rates of return.

The paper is structured as follows: We first provide a review of the related literature. Section 2 then

formally outlines the model. In Section 3, we provide all analytical results. First, we characterise the

properties any sharing rule needs to satisfy to facilitate (full) cooperation. We derive a unique optimal

sharing rule as a function of endowments and productivities that can sustain cooperation for the widest

range of discount factors. We then analyse the effect of endowment inequality on the derived sharing

rule and the sustainability of cooperation in general. We contrast this with equal and proportional sharing

rules. We then extend the analysis by allowing for heterogeneity in players’ outside options. In addition

to the analytical results, Section 4 introduces evolutionary dynamics and presents the corresponding

numerical simulation. We conclude with the discussion of our results in Section 5.

1.1 Related literature

The evolution of human societies from relatively egalitarian communities to hierarchically complex soci-

eties is inherently linked with a rise in inequality, whether this relates to wealth, skills, or other attributes
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(Bowles et al., 2010; Flannery, 2012; Johnson and Earle, 2000; Mattison et al., 2016). Sharing rules ap-

pears to have evolved jointly with this development. For example, food sharing is a common cooperative

behaviour in hunter-gatherers. While the exact sharing behaviour seems to be influenced by ecologi-

cal and economic factors, there is evidence that in relatively homogeneous communities, food is shared

equally. As communities become more heterogeneous, however, sharing behaviour appears to become

more responsive to differences in contributions (Bird et al., 2002). In this context, sharing might be better

understood as a mutualistic relationship, like collaboration, rather than a consequence of pure altruism.

As is argued in Newton (2017), such collaborations might be the driving factor of cooperative actions in

human groups. Understanding the relation between inequality and cooperation thus seems an important

research objective, to which this study aims to contribute.

Generally speaking, existing evidence relating to the effect of inequality on cooperative behaviour ap-

pears ambiguous. There is evidence from the experimental literature that people dislike inequality and

prefer to equalise outcomes through re-distribution, which would also imply a preference for equal shar-

ing (Alesina et al., 2002; Fehr and Schmidt, 2001). However, individuals in these settings are often

ex-ante homogeneous and there is an ongoing debate in the literature on the interpretation of this evi-

dence. Engelmann and Strobel (2004), for instance, show that fairness concerns might be in line with

maximin preferences, while inequity aversion fails to accurately explain individual behaviour. Further-

more, the observed effects of inequality differ depending on the exact form of the social dilemma. In the

context of the use of natural resources, the use of common resources becomes more efficient as inequality

grows, while voluntary contributions to a common good decline (Baland and Platteau, 1999, 2018). In

agreement with the latter, empirical studies show that contributions to local public goods are decreasing,

as communities become more unequal (Alix-Garcia and Harris, 2014; Dayton-Johnson, 2000). In team

contests, as inequality increases, rich players lose their incentives to contribute more than others which

reduces team success in comparison to more homogeneous teams (Heap et al., 2015). Our study specifi-

cally examines the role of the distribution of payoffs to disentangle the effects of inequality as such, and

the effects of egalitarian sharing. While inequality might also affect social preferences around reciprocity

and egalitarianism (see for example Alesina et al. (2012); Alesina and Rodrik (1994); Attanasio et al.

(2012); Bowles and Gintis (2011); Cox (2004)), we abstract from such considerations to focus on the

link between inequality and unequal sharing.

Attempts to clarify the link between inequality, sharing, and cooperation in social dilemmas are not new.

Van Dijk and Wilke (1995) present experimental evidence that, in a one-shot game, inequality in en-

dowments leads to inequality in players’ contributions, and similarly for inequality in shares of returns.

Further experimental research has shown that unequal benefit distribution in combination with endow-

ment inequality can have positive effects on contributions to a public good (Chan et al., 1999; McGinty

and Milam, 2013). For instance, distributing profits according to individual effort in firms can increase

performance, especially under peer pressure and mutual monitoring (DeMatteo et al., 1998; FitzRoy and

Kraft, 1987; Kandel and Lazear, 1992). In addition, it is suggested that sharing according to individ-

ual effort should lead to efficient and fair market outcomes (Alesina et al., 2002). Following Olson’s
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seminal analysis, it is often argued that under unequal sharing in a stage game, it is better if one group

member is the one doing all the work (Olson, 1965). However, this is only true if players’ contributions

are perfectly substitutable (Hirshleifer, 1983). This is, for instance, not the case if players have different

productivities. Ray et al. (2007) parametrise players’ substitution and study its effect on the sharing rule

in a joint project dilemma. They show that there exists a threshold for the elasticity of substitution of

players under which the egalitarian sharing rule is superior. If the elasticity is above the threshold, then

equal sharing can always be improved. In team competitions, where heterogeneous players form groups

that compete for a prize, it was suggested that the sharing rule of the returns should be a mixture between

the egalitarian division and division according to relative effort (Nitzan, 1991). If players are homo-

geneous, however, groups that share more equally tend to outplay their opponents (Nitzan and Ueda,

2011). Kugler et al. (2010) show experimentally that proportional sharing enhances team cooperation

when competing with others. In addition, it was shown that the presence of a team leader that distributes

the revenue from team production according to the individual contributions increases cooperative effort

in comparison to egalitarian sharing (Karakostas et al., 2021; Van der Heijden et al., 2009).

Much of the previous work focuses on one-shot games, suitable to analyse behaviour in large commu-

nities. In smaller social groups, however, strategic incentives differ due to reciprocity and the higher

chance of repeated interactions. Existing evidence confirms that in social dilemmas, individuals do

take into account the repeated nature of interactions by reducing free-riding behaviour (Dal Bó, 2005).

Our approach is thus particularly suited to analysing the effect of heterogeneity on cooperation in small

groups. As an example, research teams are more likely to produce a high-impact work than individual

researchers (Jones, 2021; Jones et al., 2008). Furthermore, there is evidence that heterogeneous teams

tend to be more effective (Cheruvelil et al., 2014). How credit in research output is shared might thus

affect the willingness of individual scientists to form teams and the success of such collaborations. To

our knowledge, a systematic analysis of optimal sharing in heterogeneous groups is still lacking.

Perhaps most closely related to this objective, Kobayashi et al. (2016) study the optimal sharing rule in

a two-player partnership game, in an extension of the model by Radner et al. (1986). In each period,

both players decide to either work or shirk. Surplus is divided according to a fixed, previously agreed

sharing rule. Players might differ in the effectiveness of their contribution to the project, and the cost of

contributed time. While the core idea is closely related to our study, there are several critical differences.

Our focus lies on studying the effect of endowment inequality on cooperation. Kobayashi et al. (2016)

focus on the role of imperfect monitoring, while we assume perfect information in order to generalise

results to n-players and more clearly highlight the impact of heterogeneity alone. The advantage of our

approach lies in deriving the optimal sharing rule for a more general and widely adopted public good (or

joint production) game. Our results coincide when interactions are among two equal players.
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2 Model

Each period an agent i receives an endowment ei > 0. The agent can invest a fraction xi ∈ [0, 1] in

a joint project and use the remaining fraction (1 − xi) for a private project which we also refer to as

their outside option. Returns from both projects are realised and consumed at the end of the period.

There are a total of n agents. The vector of all endowments is denoted by e = (e1, ..., en). We take this

endowment vector to be normalised such that
∑

i ei = 1, which means it can be conveniently represented

in a simplex ∆n. Any return from the joint project is shared among the n agents according to a sharing

rule f = (f1, ...., fn), where fi ∈ [0, 1] is the fraction of the jointly produced good that agent i receives.

For a sharing rule to be feasible, it has to fulfil the obvious restriction that
∑

i fi ≤ 1. Contributions

to the joint project are not necessarily equally productive across agents. The contribution of an agent i

achieves a rate of return ri, called i’s productivity. The vector r = (r1, ..., rn) denotes the productivities

of all players. The effective rate of return of an agent i from an investment of an agent j is thus firj .

For now, we assume that the productivity of the outside option is equal to 1 across all agents. While

endowments and productivities are constant across time, contributions could potentially vary for each

period t ∈ {1, 2, ...}. We denote these by the contribution vector x(t) = (x1(t), ..., xn(t)), where

xi(t) ∈ [0, 1]. After each period t, the game ends with probability (1 − δ), meaning the next period is

reached with probability δ; equivalently referred to as the continuation probability or discount factor.

The utility an agent i receives in a period t given contributions x(t) of all players at t is:

ui(x(t)) = fi

n∑
j=1

xj(t)ejrj +
(
1− xi(t)

)
ei

As only the ordinal properties of the utility function are relevant in this context, the previously men-

tioned normalisation of e remains without loss. The overall expected payoff of an agent i given some

endowment e and set of contribution vectors {x(t)}∞t=1 can be written as:

πi = (1− δ)
∑
t

δt−1ui(x(t)),

where (1− δ) is a normalising factor. We can denote this as the game

Γ(e, r, δ, f) = {N,X,Π}

where N = {1, ..., n} is the set of players, X = X1 × ... × Xn is the is the set of strategy profiles

whereby Xi is the strategy set of player i, and Π = {π1, ..., πn} denotes the players’ payoff functions

which depend on endowments e, the productivities r, continuation probability δ as well as the sharing

rule f .

We call a strategy profile an equilibrium of this game if it constitutes a subgame-perfect Nash equilibrium

(SPE). As the action space of each player is convex and players are not risk-loving, we can restrict the
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analysis without loss of generality to pure (non-stochastic) strategies.

The following definition makes precise what we mean by ‘social dilemma’. It is ‘social’ in the sense that

the socially optimal outcome - the highest aggregate payoff - is achieved when all players invest their

endowment in the joint production. This is ensured by part (i) of Definition 1. It constitutes a ‘dilemma’

as it is not individually rational for any player to invest by themselves; this is captured by (ii). This

further implies that every player has an incentive to free ride on the contributions of the others.

Definition 1. A game Γ(e, r, δ, f) is a social dilemma if for all i ∈ N : (i) ri ≥ 1 and (ii) firi < 1.

As we are interested in settings where cooperation is socially optimal, we maintain the assumption

that ri ≥ 1, ∀i ∈ N throughout this analysis. This could, however, be relaxed for at least some i

without affecting the results. With this assumption, aggregate payoffs are maximised when each player

contributes their entire endowment to the joint project. We thus primarily focus on if and when this can

be sustained in equilibrium. We call this ‘full cooperation’ of players. In other words, we characterise

those games, for which x(t) = (1, ..., 1) is an equilibrium contribution vector for all t.

Definition 2. We say the triple (e, r, δ) allows for cooperation if there exists a feasible sharing rule f

such that full cooperation is an equilibrium in the game Γ(e, r, δ, f).

A given triple (e, r, δ) allows for cooperation if there exists at least one way of sharing the surplus

and punishing deviations such that no player prefers to free ride. Full cooperation can, of course, be

trivially achieved in equilibrium if productivities are so high that players have an incentive to invest by

themselves, independent of the others. For a sufficiently large r, the returns from investing in the joint

project can be shared according to some f such that firi ≥ 1 for all players. It is easily verified that full

cooperation is then a weakly dominant strategy at every t in the corresponding game Γ; which is not a

social dilemma. To distinguish these trivial cases, we introduce the following definition:

Definition 3. We say the triple (e, r, δ) trivially allows for cooperation if there exists a feasible sharing

rule f in the game Γ(e, r, δ, f , ) with continuation probability δ such that firi ≥ 1, ∀i ∈ N .

Even if (e, r, δ) trivially allows for cooperation, it is in principle possible to find an alternative sharing

rule that creates a corresponding social dilemma. As will become clear, however, this would require

that not all surplus from investing in the joint project is allocated to the players. Such an outcome

is inefficient. The dilemma could be trivially resolved by (feasibly) increasing every player’s share.

Interestingly, as the next result shows, this notion of triviality can be expressed independently of e and

δ, only in terms of productivities r. It thus suffices to check r in order to determine whether (e, r, δ) is

trivial in the sense of Definition 3.

Lemma 1. A triple (e, r, δ) trivially allows for cooperation if and only if
∑

i
1
ri
≤ 1.

We henceforth restrict the analysis to non-trivial cases, where cooperation is nevertheless socially opti-

mal. This is formalised by the following assumption, which is maintained throughout.
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Assumption 1. Any productivity vector r is such that
∑

i
1
ri
> 1 and r ≥ 1, with ri > 1 for at least

some i ∈ N .

Under Assumption 1, if (e, r, δ) allows for cooperation, then it does so in a non-trivial way. Furthermore,

aggregate payoffs from full cooperation exceed those of any equilibrium where not all player contribute

their entire endowment. Cooperation is socially optimal.

3 Optimal sharing

3.1 Achieving full cooperation

Whether full cooperation can be achieved in equilibrium depends on how players react to a possible

deviation by some player i from xi(t) = 1. If this has no consequences on the actions of the others,

given the social dilemma aspect of the game, a player would strictly prefer to lower their contributions

and thus free ride. Such a deviation to some x′i(τ) < 1 at some time τ is not optimal for player i if the

payoff on the equilibrium path exceeds that of a deviation. This requires:

∑
t

δtui(x(t)) ≥
∑
t

δtui(x
′(t)), (1)

where x′(t) is the vector of contributions given the deviation of i at τ , including the response to this

deviation at all t > τ . To deter free riding, the actions players take after a deviation should reduce

the payoff of the defector as much as possible. Clearly, the harshest such ‘punishment’ is achieved if

x′j(t) = 0 for all j 6= i and t > τ . Furthermore, this punishment is subgame-perfect in a social dilemma,

as it is itself a Nash equilibrium of the stage game. In line with the literature, we call this trigger-strategy

Grim. As this minimises the right-hand side of (1) for all periods after a deviation, it follows immediately

that if full cooperation can be sustained for any strategy profile, it can be sustained under strategy Grim.

It thus forms the baseline for the following analysis.

Using (1) and the definition of the strategy Grim, we can conclude that full cooperation is an equilibrium

only if:

fk
∑
i∈N

eiri ≥ (1− δ)fk
∑
j 6=k

ejrj + ek, ∀k ∈ N.

The left-hand side is the (equilibrium) payoff from full cooperation while the right-hand side is the payoff

from the most profitable deviation (xi(t) = 0). Equivalently, this can be written as:

δ
∑
j 6=k

ejrj ≥
( 1

fk
− rk

)
ek, ∀k ∈ N (2)

which can be re-arranged to derive a necessary condition for a sharing rule to sustain full cooperation

under the strategy Grim:
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fk ≥
ek

δ
∑

j 6=k ejrj + ekrk
, ∀k ∈ N. (IC)

For a given set of parameters, IC characterises all potential ways of distributing the returns from the

joint project such that no player has an incentive to deviate under the strategy Grim. It describes a set

of sharing rules that can sustain full cooperation as Nash equilibrium. For Grim to be not just a Nash

equilibrium but also subgame perfect, the off-equilibrium (punishment) path needs to be consistent with

each player’s incentives as well. In other words, not contributing to the joint project when no other player

contributes needs to be a Nash equilibrium. We require:

fkrk < 1, ∀k ∈ N. (SD)

For any social dilemma, SD is satisfied by definition. We are thus interested in the subset of (feasible)

sharing rules that constitute a social dilemma in the corresponding Γ. This set can be characterised as

follows:

F(e, r, δ) =
{
f | f ∈ Rn is feasible and satisfies IC & SD}. (3)

Any element of F (if any) describes a possible way to share the returns from the joint project such that

full cooperation is an equilibrium in the corresponding social dilemma Γ, given strategy Grim. Lemma

2 shows that this focus on social dilemmas is not a restriction. It implies that if full cooperation can

be achieved in any equilibrium, there exists a feasible sharing rule f such that Γ(e, r, δ, f) is a social

dilemma and full cooperation is an equilibrium for the strategy Grim.

Lemma 2. If (e, r, δ) allows for cooperation, then F(e, r, δ) 6= ∅.

Lemma 3 provides a convenient characterisation of those (e, r, δ) that allow for cooperation and thus

have a corresponding F that is non-empty.

Lemma 3. A triple (e, r, δ) allows for cooperation if and only if:∑
k∈N

ek
δ
∑

j 6=k ejrj + ekrk
≤ 1. (4)

If (4) is strict, then there is a continuum of sharing rules in F(e, r, δ), meaning |F| = ℵ1. If (4) holds

with equality, then |F| = 1.

For any endowments e, productivities r, and continuation probability δ, the returns from the joint project

can be shared such that full cooperation can be achieved in some equilibrium as long as (4) is satisfied.

In combination with Lemma 2, this implies that if (4) holds, then full cooperation is an equilibrium under

Grim in some social dilemma Γ(e, r, δ, f), where f is an element in the corresponding F . For a generic

set of parameters that allow for cooperation, however, there is more than one way of sharing to achieve

cooperation. The following sections aim to further characterise F and some of the elements in it.
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3.2 Possibility of cooperation

If productivities and the chance of future interactions are high, cooperation should be easy to sustain. In

environments where the return from cooperation is slim and interactions are rare, constraints on equilib-

rium cooperation are harder to satisfy. There might be no way of sharing returns, such that individuals

cooperate in equilibrium; F is empty.

Other than one might expect, however, Theorem 1 establishes that whether an environment permits coop-

eration is not entirely determined by r and δ. Even in those environments ‘unfavourable’ to cooperation

(i.e., low r and/or δ), cooperation can be achieved at least for some endowment distributions. Interpret-

ing this more loosely, if a jointly produced good can be flexibly shared among contributors, then we can

find some contributions and sharing rule that makes cooperation the best course of action for everyone.

Theorem 1. For any productivities r and continuation probability δ, there exists an endowment e, such

that (e, r, δ) allows for cooperation.

While cooperation might not be achievable for all endowments, no matter how low δ and r are (given all

assumptions are still satisfied), returns can be shared in a way that cooperation in equilibrium is possible

for at least some e, meaning F(e, r, δ) 6= ∅.
This does, however, rely on players being able to share flexibly. If we restrict attention to equal sharing

(i.e., fk = feq ≡ 1/n, ∀k ∈ N ), it is easy to see that this does not hold. A particularly instructive case

is when productivities are equalised across players (i.e., rk = r, ∀k ∈ N ). If for such an r, sharing

returns equally can make players cooperate for any endowment distribution, then it can do so for an

equal endowment distribution (i.e., ek = eeq ≡ 1/n,∀k ∈ N). In the words of Hauser et al. (2019),

eeq is the endowment distribution ‘most conducive to cooperation’. However, there exist low enough

r and δ such that feq fails to achieve full cooperation in any equilibrium. In fact, we can find r and

δ such that F(eeq, r, δ) = ∅. Such a triple (eeq, r, δ) does not allow for cooperation. It then follows

from the previous argument that feq /∈ F(e, r, δ) for any e. In other words, equal sharing is particularly

effective at achieving cooperation for equal endowments and productivities. However, if it cannot achieve

cooperation for equal endowments (and productivities), it also fails to entice players to cooperate for any

other endowment distribution.

Interestingly though, as Proposition 1 shows, this is not at all representative of the setF . In fact, we reach

the opposite conclusion: if there is a way to share returns such that individuals are willing to cooperate

at equal endowments, then this is also true for any other endowment.

Proposition 1. Suppose that endowments e and productivities r are equal across players and (e, r, δ)

allows for cooperation. Then for every endowment distribution ê, every r̂ ≥ r, and every δ̂ ≥ δ, (ê, r̂, δ̂)

allows for cooperation.

If we now choose the continuation probability and productivities such that cooperation becomes just

feasible at equal endowments (|F(eeq, r, δ)| = 1), then this is the only point in the endowment simplex

where equal sharing can sustain cooperation. For any other e, we have feq /∈ F(e, r, δ). However, with
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the same δ and r, F(e, r, δ) 6= ∅ for any e ∈ ∆n. As Figure 2 demonstrates, cooperation can be achieved

at any endowment if players share appropriately and unequally.

Figure 2: Possibility of full cooperation under different sharing rules for equal productivities. All plots are
implemented for δ = 0.5. Full cooperation is feasible under equal sharing only at e = (1/3, 1/3, 1/3), whereas
unequal sharing allows for full cooperation ∀e.

3.3 Endowment inequality and cooperation

The previous section highlighted that understanding the connection between endowments and coopera-

tion is key in determining if and when cooperation can be achieved. Figures 2 and 3 give an indication

that this link is not arbitrary but closely related to endowment inequality. This section explores this link

systematically. We first focus on comparing endowments regarding their ‘cooperativeness’ in general

before analysing the effects of inequality in particular.

Definition 4. Suppose for some endowments e and ê, and productivities r, there exists a discount factor

δ, such that (ê, r, δ) allows for cooperation but (e, r, δ) does not. Then we say for productivities r,

cooperation is easier to sustain with the endowment vector ê than e.

Definition 4 establishes a particular ordering regarding the cooperativeness of endowments for a given

set of parameters. If for one endowment players can find a way of sharing to sustain cooperation

(F(ê, r, δ) 6= ∅), while for the other they can’t (F(e, r, δ) = ∅), then the former endowment is in

some sense more cooperative at these parameter values. But even though the comparison is defined at a

specific r and δ, it is more general than it might appear due to how F depends on r and δ.

We can see that the constraint IC is relaxed as r and δ increase, as is (4). It follows then from Lemma 3

that if (ê, r, δ) allows for cooperation, then this is also true for any higher productivities and continuation
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Figure 3: Possibility of full cooperation under different sharing rules for unequal productivities. All plots are
implemented for δ = 0.5.

probability. So if at some r, cooperation is easier to sustain with ê than e, the minimum continuation

probability δmin required to achieve cooperation with these productivities is necessarily lower for ê than

e. Furthermore, for any continuation probability greater than this minimum, cooperation can be achieved

with ê. In this sense, ê makes cooperation easier. We can then ask if given some productivity vector, is

there an endowment vector with which cooperation is easier to sustain than with any other endowment.

In other words, is there a maximally cooperative endowment in the simplex? Under optimal sharing, this

turns out to be not the case.

Proposition 2. No maximally cooperative endowment exists. That is, for any e and r, there exists an

endowment ê with which cooperation is easier to sustain for r. Furthermore, there exists r̂ < r such that

this is still true.

As can be easily seen from IC, the minimum share a player need to receive from the joint project in-

creases with the player’s endowment. A player who invests more, all else equal, has a higher minimum

compensation threshold, below which cooperation cannot be achieved. Whether full cooperation is an

equilibrium outcome thus depends on how endowments are distributed. Interestingly though, Proposi-

tion 2 shows that no matter the individual productivities of agents, there is no optimal way to distribute

endowments in order to maximise cooperation for the widest possible range of parameters. One direct

implication is that if we could choose the endowment distribution from some compact subset of the sim-

plex, then the choice that maximises the cooperativeness of the endowment allocation would always lie
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on the boundary of this set. In other words, possible re-distributions should be fully realised (in some

direction) when maximising cooperativeness.

Generally speaking, this arises because more unequal endowments make cooperation easier and there

are no ‘most unequal’ endowments that are still a social dilemma, unless the set of endowments is

closed. Theorem 2 generalises the insight from Proposition 5, that endowment inequality can promote

cooperation. It shows that for any productivity vector and no matter the endowments, there exists at

least some increase in inequality of endowments that makes defection less likely. As will be shown, this

does not arise from any effect on the average productivity, but it is the inequality itself that is driving

this effect. To formalise this discussion, we introduce the following definition that makes precise how

endowments can be compared in terms of their (in-)equality.

Definition 5. An endowment ê is more unequal than e if the distribution of ê is a mean-preserving

spread of the distribution of e.

A formal definition of a mean-preserving spread is provided in Mas-Colell et al. (1995), p.197. Intu-

itively, an endowment ê is more unequal than e, if ê can be obtained from e by transfer of endowment

from agents with lower endowment to agents with higher endowment. Given that only endowment shares

rather than absolute values are relevant for equilibrium behaviour, various alternative definitions could

be implemented without affecting the results.

Theorem 2. For any productivities r and endowment e, there exists a more unequal endowment ê, such

that for r, cooperation is easier to sustain with the endowment vector ê than e.

Proposition 3 furthermore shows that this result does not hinge on the productivity of any particular

player. It is inequality itself that makes cooperation easier, no matter which player holds the majority of

the endowment.

Proposition 3. For any productivity vector and continuation probability, full cooperation can be sus-

tained with any sufficiently unequal endowment distribution. That is, for any r and δ, there exists

ε ∈ (0, 1) such that for any endowment e with max{ei}i∈N > 1− ε, (e, r, δ) allows for cooperation.

3.4 Towards an optimal sharing rule

As Lemma 3 established, for a generic (e, r, δ) that allows for cooperation, there exist a continuum

of sharing rules in F . In these cases, (4) holds with strict inequality. The remaining returns from the

joint project can be freely allocated among agents without violating any constraints. Only as δ and/or r

decrease, does (4) provide a tight characterisation.

For any given endowment and productivity vector, there exists a lower limit on δ below which coopera-

tion cannot be implemented in equilibrium. The incentive to defect becomes too high as the probability

that the interaction is repeated vanishes. At the δmin where cooperation can just be achieved, the cor-

responding F contains exactly one element. This sharing rule will receive particular attention in the

subsequent analysis.
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For a given e and r, we denote the lowest δ such that (e, r, δ) allows for cooperation by δmin. Further-

more, as follows from Lemma 3, |F(e, r, δmin)| = 1. We denote this element of F by f ∗. It follows

from the definition of F that if there is only one element, then IC must hold with equality for all players.

This yields an expression for f ∗:

fk
∗ ≡ ek

δmin
∑

j 6=k ejrj + ekrk
, ∀k ∈ N. (5)

As Lemma 4 shows, this sharing rule satisfies several desirable properties. First of all, it is efficient in the

sense that it allocates all returns (
∑

k∈N f
∗
k = 1). No surplus is wasted. Furthermore, for a given e and

r, the corresponding f ∗ ensures that Γ(e, r, δ, f ∗) is a social dilemma. And finally, if (e, r, δ) allows for

cooperation (i.e., δ ≥ δmin), then f ∗ ∈ F(e, r, δ). The sharing rule f ∗ can not only ensure cooperation

in the corresponding social dilemma Γ for δmin, but also for any larger δ.

Lemma 4. If (e, r, δ) allows for cooperation, then there is at least one sharing rule f that sustains full

cooperation in the social dilemma Γ(e, f , r) and
∑

i fi = 1. f ∗ is such a rule.

As is clear from (5) and the definition of δmin, both are jointly determined.While they can be characterised

from the set of necessary and sufficient conditions to maintain cooperation in equilibrium, this potentially

poses problems for the computation of both when there is a large number of players. Proposition 5

provides a computationally convenient method to derive f ∗ and δmin for arbitrary n. As Figure 4 shows,

qualitatively, δmin behaves similarly to the cooperation constraint itself: the more unequal the endowment

distribution is, the lower the requirement on players’ patience.

Proposition 4. The optimal sharing rule f̂ is the eigenvector that corresponds to the largest eigenvalue

of the matrix Φ such that

φij =


−ei(ri − 1)∑

k 6=i ekrk
, i = j

ei∑
k 6=i ekrk

, i 6= j

Moreover, the largest eigenvalue is the minimal continuation probability ( δmin) for this sharing rule to

be feasible.

To gain some intuition for this result, note that equation (5) can be rewritten as

δmin

(
f∗i
∑
j 6=i

ejrj

)
︸ ︷︷ ︸

cost of punishment for defection

−

private benefit from defection︷ ︸︸ ︷(
ei − f∗i eiri

)
= 0.

At the limit where cooperation can just be sustained, the private benefit from defection is exactly com-

pensated by the cost of punishment. A higher individual share reduces the savings from not contributing

to the joint project and increases the loss from forgone future contributions. More specifically, an agent
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i who fails to contribute obtains a return ei but forgoes their private return from the contribution to the

joint project fieiri. As fi increases, this difference diminishes. Furthermore, this player also forgoes any

future shares in the joint returns as the deviation triggers the punishment, reducing all future contribution

to 0. A higher continuation probability puts further weight on the cost of this punishment as it makes

it more likely that these periods are actually reached. The optimal sharing rule f∗ together with the

minimum continuation probability δmin balance these forces jointly for all players. This gives rise to a

system of n equations, which can be written as:

Φf∗ = δminf
∗, (6)

with Φ as defined in Proposition 4. As is clear from (6), f∗ is an eigenvector of Φ, with δmin the

corresponding eigenvalue. This provides a convenient method for jointly determining f∗ and δmin.

The subsequent sections are devoted to the derivation and analysis of this sharing rule f ∗.

Figure 4: Optimal sharing rule and the minimum continuation probability as a function of players’ endowments.
On the right, we plot feasibility area of full cooperation under the optimal sharing rule for players’ with contin-
uation probability δ = 0.5. There exists a set of endowments for which δmin > 0.5 and cooperation cannot be
sustained.

3.5 Comparison to other sharing rules

As a first step in analysing the properties of the optimal sharing rule, we contrast it against the egalitarian

sharing rule feq that awards each player the same share 1/n independent of productivities and endow-
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ments. The corresponding Γ(e, r, δ, feq) is then a classic public goods game where returns are equal for

all agents. The following Proposition 5 establishes that f ∗ does generically strictly better than equal

sharing in maintaining cooperation: fixing some generic endowment and productivities, the correspond-

ing f ∗ can maintain cooperation for (strictly) lower δ than equal sharing. This also holds for lower

productivities, even though when reducing some rj , a given fixed f ∗ is no longer optimal. Nevertheless,

it can sustain full cooperation for some (lower) productivities where full cooperation under equal sharing

fails.

Proposition 5. If for some endowment distribution e, productivities r, and δ > 0, full cooperation can

be sustained as equilibrium under equal sharing, then it can be implemented with the sharing rule f ∗.

For generic such e, r, and δ, there exists r̃ < r and δ̃ < δ such that full cooperation can be sustained

under f ∗ but not under equal sharing.

We can conclude that modelling a joint production task as a public goods game and thus imposing an

equal sharing rule comes with a loss of generality. Cooperation is generically harder to maintain. The

two approaches only coincide for a very specific cases, as is formally characterised by Proposition 6.

Proposition 6. The optimal sharing rule is an equal sharing rule (f ∗ = feq) if and only if:

êk
êi

=
n− (1− δmin)ri
n− (1− δmin)rk

, ∀i, k. (7)

An endowment distribution ê satisfying (7) is non-generic.

To compensate for the shortcoming of equal sharing with heterogeneous players, one might consider

splitting the returns proportional to players’ contributions. This has, for instance, been axiomatically

proposed as a desirable sharing rule for linear production technologies in the context of cooperative game

theory (Moulin, 2002). With linear technologies, as are considered here, the effect of any contribution

on output is independent of other players’ contributions. Proportional sharing thus weighs contributions

equally. In our setup, this allows for two interpretations: sharing according to the actual contributions

xkek, or the effective contributions weighted by players’ productivities, xkekrk. The corresponding

sharing rules for full cooperation (xk = 1) are thus defined as:

g∗k = ek and h∗k =
ekrk∑
ejrj

.

It can be easily verified that, for certain e, r, and a sufficiently high δ, both rules satisfy condition (IC) and

can thus sustain full cooperation. While equal sharing fails to achieve full cooperation in equilibrium for

high inequality, proportional sharing can, at least for some δ, overcome the incentive problem of richer

players. However, it can also lead to the situation when Γ does not constitute a social dilemma anymore

as full contribution becomes a dominant strategy for rich players even if poor players fail to contribute.

The aim here is to better understand how the effects of inequality differ across these rules and particularly

how they compare to the (strategically) optimal sharing rule derived in (5).
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Proposition 7. The proportional sharing rule g∗k is equal to fk ∗ if and only if

êk
êi

=
ri
rk
, ∀i, k. (8)

An endowment distribution ê satisfying (8) is non-generic.

Proposition 8. The proportional sharing rule h∗k is equal to fk ∗ if and only if

êkrk
êiri

=
(1− δminrk)ri
(1− δminri)rk

, ∀i, k. (9)

An endowment distribution ê satisfying (9) is non-generic.

Figure 5: Proportional, proportional according to the productivities and optimal sharing rules for a 2-player game
with r1 = 1.3, r2 = 1.8.

For example of a two-player game, the shares players receive under rules h∗k and fk ∗ are equal if and

only if
e1
e2

=
r2 − 1

r1 − 1
.

For the set of productivities from Figure 5 such that r1 = 1.3 and r2 = 1.8 these sharing rules coincide at

the endowment distribution e1 = 8/11 and e2 = 3/11. As can be seen in Figure 5 (left), the share player 1

receives as they get richer after e2 = 8/11 does not increase. For the optimal rule, as players’ endowments

become more unequal, the marginal return from investing in a joint project, defined as f̂iri, approaches 1.

However, the share of the richest player will still be less than 1. Even though the endowment distribution

is such that ei
ej
→ ∞, the ratio of shares remains finite. This implies that the poor player receives a

disproportionately large share of the produced good.

In case of a three-player game, the exact outcome of all four sharing rules depend on the productivi-

ties of players. For equal sharing, inequality in endowments makes cooperation harder to sustain, and,

when productivities are unequal, the largest endowment share should be given to the most productive

player. For equal productivities, both proportional sharing rules exhibit identical behaviour as the equal

sharing. As productivities of players become unequal, behaviour of these two rules departs from each
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other: sharing proportional to endowments guarantees a larger share to a more productive player, while

sharing proportional to effective contributions guarantees a larger share to the least productive player.

Generally, inequality in productivities makes cooperation harder to sustain for the sharing proportional

to effective contributions. We demonstrate these observations in Figures 6 and 7. While it might appear

that the proportional sharing according to players’ endowments behaves similarly to the optimal sharing,

one can find examples where both proportional rules fail at sustaining cooperation for any endowment

distribution, yet equal and optimal sharing rule can sustain cooperation for at least some endowment

distributions (e.g. for parameters r1 = 1.1, r2 = 1.5, r3 = 2.9, δ = 0.3).

Figure 6: Possibility of cooperation (in purple) for r1 = r2 = 1.4, r3 = 1.7 and δ = 0.6. For this set
of parameters, the optimal sharing allows for cooperation for any endowment distribution and is presented as a
colormap filling of the endowment simplex: the darker the colour, the easier it is for the optimal sharing to sustain
cooperation.

3.6 Heterogeneity of outside options

In the model presented so far, we accounted for possible heterogeneity of players in their endowments

as well as their productivity regarding contributions to the joint project. The marginal return from their

outside option - for example returns from private consumption - was normalised across players. However,

one can easily imagine that players also differ in terms of the attractiveness of the outside option they

have access to. As a specific example, players that are more productive in the joint production might also

be more productive in other private tasks. Productivities would then be positively correlated across public

and private production. Or alternatively, what might make players specifically suited for a particular task,

might make them less productive in others. In this case, the correlation between the productivity in a

joint task, r, and in a private project, q, would be negative.
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Figure 7: Feasibility of cooperation (in purple) for r1 = 1.1, r2 = 1.5, r3 = 2.9, δ = 0.6. For this set
of parameters, the optimal sharing allows for cooperation for any endowment distribution and is presented as a
colormap filling of the endowment simplex: the darker the colour, the easier it is for the optimal sharing to sustain
cooperation.

In order to accommodate this possible variation into our model, we now allow returns from the private

activity to vary across players. Denote by the vector q the return of the outside option of each player. For

example, a player k with outside productivity qk receives utility qkek(1− xk) from investing an amount

ek − ekxk in their private project. In the previous analysis, qk was simply assumed to be 1.

This additional heterogeneity naturally affects the minimum shares players have to be guaranteed in the

joint project for full cooperation to be sustainable in equilibrium. A player with high q needs to be

guaranteed a larger share, all else equal. More precisely, the minimum share of a player k for this player

to cooperate in equilibrium takes the form:

fk(qk) ≥
ekqk

δ
∑

j 6=k ejrj + ekrk
(10)

That is, players’ shares in the joint project have to cover potential benefits they could get by investing

in other projects. However, given the multiplicative form of the rule (10), our previous results still hold

(concavity in e), i.e. our results are robust with respect to such a model modification.

When taking into account outside options, one can determine the sharing rule most conducive to cooper-

ation in a similar manner as before by constructing matrix Φ(q) such that

φij(q) =


−ei(ri − qi)∑

k 6=i ekrk
, i = j

eiqi∑
k 6=i ekrk

, i 6= j.

19



The corresponding eigenvalue δmin(q) with qi ≥ 1 is greater than δmin. Necessarily, cooperation be-

comes harder to sustain as outside options become more valuable.

Figure 8: Feasibility of full cooperation under sharing rules with homogeneous and heterogeneous outside op-
tions. All plots are implemented for δ = 0.5.

4 Evolutionary dynamics under the optimal sharing rule

In order to verify predictions of the model, we run evolutionary simulations using introspection dy-

namics, introduced in Hauser et al. (2019). As is usually the case, we study the evolution of strategies

to determine the evolution of behaviour of players. In other words, we examine which strategies are

more likely to be adopted by the population of players and observe the resulting choices over time. In

order to model the reciprocity implied by our setup and yet limit complexity, we restrict our analysis

to memory-one strategies, which take into account the outcome of the previous round but not earlier

rounds. Memory-one strategies are simple enough to be analysed analytically and via numerical simula-

tions (Baek et al., 2016; Hilbe et al., 2017), yet complex enough to capture the most frequently observed

behavioural strategies like Defectors, Cooperators, Grim players or Conditional cooperators (strategy

Tit-for-Tat) (Dal Bó and Fréchette, 2018, 2019; Fischbacher et al., 2001). These strategies can be repre-

sented by a vector pi = (p0,x̂i , px,x̂i). Here, p0,x̂i is the probability that player i contributes x̂i in round

0. The entries px,x̂i denote the conditional probability that player i contributes x̂i in any subsequent

round given that the contribution in the previous round was x. To make sure the strategies are stochastic,

we require
∑

x̂i p0,x̂i = 1 and
∑

x̂i px,x̂i = 1. In the simplest case, the contributions x̂i can be either

0 or 1, which would correspond to the action Defect or Cooperate in a Prisoner’s Dilemma setup. Such

strategies are called deterministic. However, in our simulations, we consider strategies such that x̂i can

take any value in the interval [0, 1].
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Memory-one strategies allow us to calculate payoffs by constructing a Markov chain, M . Each state of

M corresponds to possible outcomes of the previous round. For example, if we consider a game between

two players with deterministic strategies, the following outcomes are possible: both players cooperate,

player 1 defects and player 2 cooperates, player 1 cooperates and player 2 defects, or both players defect.

We construct a transition Markov matrix M = (mx,x′), where mx,x′ is the set of states defined as

mx,x′ =
∏
i

pix,x̂i .

Here, x is the contribution vector in the current round and x′ is the contribution vector in the next round.

Let v0x̂ =
∏
i p
i
0,x̂ be the probability that players contribute x̂ in the very first round. Then, the invariant

distribution of the Markov chain M can be calculated as

v = (1− δ)v0 · (I − δM)−1,

where v0 = (v0x̂) and I is the identity matrix. This invariant distribution denotes the probabilities to

observe contributions x̂ over the infinite number of interactions given the continuation probability δ.

Given these probabilities, we can calculate the average payoffs of players as

πi =
∑
x

vx · ui(x).

As δ → 1, the vector v approaches a left eigenvector of M . In order for this vector to be unique and for

the matrix M to be ergodic, we allow for non-zero probabilities of errors such that players every now

and then execute a different strategy. Specifically, we consider pε = (1− ε) · p + ε · (1− p).

In the introspection dynamics (Hauser et al., 2019), at every time step a player is chosen at random to

update their strategy. Let the chosen player to use strategy pi before updating. The chosen player adopts

a new strategy p̃i with the probability

ρs =
1

1 + exp[−s(πi − π̃i)]
,

where s is the parameter describing the strength of selection and πi and π̃i are the corresponding payoffs

for strategies pi and p̃i. In the simulations, at every time step, one player is chosen randomly to compare

their current strategy to a new randomly generated stochastic memory-one strategy. With probability ρs
the chosen player switches to the new strategy. Afterwards, the next time step begins.

Results of computer simulations for three players can be found in Figure 9. Generally, predictions of

the simulations parallel predictions of our model, that is, inequality makes cooperation easier to sustain.

However, even though for this set of parameters the model predicts that full cooperation is feasible

for any endowment distribution, in the stochastic simulations players were less likely to cooperate for

sufficiantly high equality, that is, in the centre of the simplex. This can be due to the inability to fixate
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on an equilibrium, where effort is required from all three players due to a frequent updating events.

Figure 9: Evolutionary simulations for selection strength s = 1, 000, number of generations 106 and δ = 1.

5 Discussion and conclusions

We systematically address the sustainability of (full) cooperation in infinitely repeated interactions among

heterogeneous agents. Broadly speaking, inequality of players has previously been seen as detrimental

for cooperation in social dilemmas. However, we argue that this is specific to an egalitarian sharing of the

returns. We show that in social dilemmas, sharing returns according to individual characteristics avoids

the destabilising effect of inequality that is observed under egalitarian sharing. If individual shares appro-

priately account for endowments, productivities, and strategic incentives of contributors, heterogeneity

of players can lead to more efficient social outcomes. While there might be larger societal benefits to

reducing inequality, our results suggest inequality and heterogeneity might not have as negative an in-

fluence as might be expected. In the context of research collaborations, for instance, this suggests that
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heterogeneity of contributors might benefit the joint project if credit can be attributed accordingly.

While we find there is generically no unique sharing rule to facilitates full cooperation in equilibrium,

we characterise a (unique) sharing rule as a function of endowments and productivities that performs

weakly better than all other such rules. We analyse the properties of this rule, some of which might

be unexpected. Players with the largest endowments, for instance, may be compensated proportionally

less than much lower contributors. Furthermore, sufficient inequality in endowments allows for full

cooperation in settings that would otherwise only result in defection. As an implication of this result, it

is generally beneficial for cooperation, and thus welfare, if one individual takes a leading role in a project,

even if individuals are otherwise identical. Furthermore, heterogeneity in productivity does not require

an ‘aligned’ inequality in endowments for this benefit to take effect. For example, suppose collaborators

in a team can pledge the available time that they, in principle, invest in a project. Then maximising the

chance of everyone successfully following through does not necessarily require the member with the

highest productivity to invest the most time. It is, however, beneficial if time allocations differ rather

than everybody contributing equally - provided that returns are shared in accordance with everyone’s

contributions and strategic incentives. Hence, with flexible credit sharing, collaborations might succeed

because of and not in spite of inequality of contributions. This aligns with the suggestive evidence

from various scientific fields where larger, heterogeneous research collaborations are linked to more

differentiated, non-egalitarian credit attributions.

One aspect not considered here are the possibility of preferences over the distribution of outcomes. While

not uncontested, there is suggestive evidence for inequality aversion and other distribution-related pref-

erences. Since inequality of endowments requires inequality in rewards for cooperation to be compatible

with individual incentives, such preferences might affect the relation between inequality, sharing, and

cooperation. A possible extension of the work presented here might theoretically and experimentally

investigate such interactions.
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A Proofs

Proof for Lemma 1.

Proof. Suppose
∑

i
1
ri
≤ 1. Consider the sharing rule fi = 1

ri
. Clearly, firi = 1, ∀i ∈ N . Furthermore,

it is feasible since
∑

i fi =
∑

i
1
ri
≤ 1 by assumption.

Suppose now there is a feasible rule fi such that firi ≥ 1, ∀i ∈ N . Feasibility requires that
∑

i fi ≤ 1.

But then fi ≥ 1
ri

and accordingly
∑

i
1
ri
≤ 1 as required.

Proof for Lemma 2.

Proof. Consider the following way of sharing:

f̂k =
ek

δ
∑

j 6=k ejrj + ekrk
, ∀k ∈ N.

Condition SD can be written as:

f̂krk =
ekrk

δ
∑

j 6=k ejrj + ekrk
< 1

As δ > 0 and ej , rj > 0, ∀j ∈ N , this is satisfied for all i. By definition, f̂ satisfies IC, which is a

necessary condition for full cooperation. It follows that if there is any feasible sharing rule that sustains

cooperation in the corresponding Γ, then:∑
k∈N

ek
δ
∑

j 6=k ejrj + ekrk
≤ 1

which implies
∑

k∈N f̂k ≤ 1. If (e, r, δ) allows for cooperation, then f̂ ∈ F(e, r, δ).

Proof for Lemma 3.

Proof. Sufficiency: Suppose (4) holds. Setting f̂k = ek
δ
∑

j 6=k ejrj+ekrk
for all k ∈ N yields a feasible

sharing rule. By construction, (2) is satisfied. There is no incentive to deviate under strategy Grim.

Furthermore, the punishment path for Grim is a Nash equilibrium. Thus full cooperation can be sustained

as SPE in Γ(e, r, δ, f). According to Lemma 2, this is a social dilemma, as required by Definition 2.

Necessity: Suppose now a sharing rule f exists, that sustains full cooperation in equilibrium. Then

it follows from (IC) that fk ≥ ek
δ
∑

j 6=k ejrj+ekrk
, ∀k ∈ N . But then there exists an f̂ with f̂k =

ek
δ
∑

j 6=k ejrj+ekrk
, ∀k ∈ N and necessarily f̂ ≤ f . Accordingly, if f is feasible meaning

∑
k∈N fk ≤ 1

then so is f̂ . Again, according to Lemma 2, the corresponding Γ is a social dilemma.
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To prove the last statement, suppose the inequality (4) is strict. Then f̂ ∈ F , where f̂ is as defined

previously. Furthermore,
∑

k∈N f̂k < 1. Let

ε ≡ 1

n
·
(

1−
∑
k∈N

f̂k

)
.

For any ε ∈ [0, ε̂], let fε ≡ f̂ + ε. Clearly, for any such fε, we have fε ∈ F . Finally, if (4) holds with

equality, then f̂ ∈ F . As IC must also hold with equality, there can be no other element in F . The result

follows.

Proof for Theorem 1.

Proof. Let e be such that e1 = 1 while ei = 0, ∀i ∈ {2, ..., n}. Note that there is no social dilemma

associated with e that allows for cooperation since it would require i = 1 to have an incentive to invest

in the joint project without the contribution of any other player. This would need f1r1 ≥ 1 meaning that

there is no incentive to free ride and hence no ‘dilemma’. Take any e, r, and δ and consider an infinite

sequence {e(1), e(2), e(3), ...} with e(1) = e that converges to e. There is an associated sequence of

sharing rules {f̂, f̂(1), ...}, where f̂ is as defined in the proof of Lemma 3. As {e(k)}∞1 is a convergent

sequence, for any ε > 0, there is a Kε ∈ N such that for all k > Kε, e(k) is such that e1(k) > 1− ε. As

ej > 0, ∀j ∈ N for any allowable endowment, we can conclude that ei(k) < ε, ∀i ∈ {2, ..., n}. This

implies that

f̂1(k) ≤ 1

δεr + r1

where r = min{r1, r2, ..., rn}. Furthermore, for all j ∈ {2, ..., n}:

f̂j(k) ≤ ε

δ(1− ε)r + εrj

Clearly, as ε→ 0, f̂j → 0 for any j 6= 1 while f̂1 → 1
r1

. But as r1 > 1 by assumption,
∑

i f̂i →
1
r1
< 1.

As f̂i is a continuous function of e, the sequence {f̂, f̂(1), ...} converges to f
∗

which is such that f
∗
1 = 1

r1

and f
∗
j = 0 for all j 6= 1. Let φ = 1− 1

r1
. There exists Kφ such that for all k > Kφ,

∑
i f̂i(k)− 1

r1
< φ

and thus
∑

i f̂i(k) < 1. Let ε∗ be such that

1

δε∗r + r1
+

(n− 1)ε∗

δ(1− ε∗)r + ε∗rj
= 1.

It follows that for any k > Kε∗ where Kε∗ is defined as before, e1(k) > 1− ε∗ and thus
∑

i f̂i(k) < 1,

which implies k > Kφ. For any such e(k), (e(k), r, δ) allows for cooperation.

Proof for Proposition 1.

Proof. First, we show that the constraint that determines whether the optimal shares are feasible reaches

an extremum point at the equal endowment distribution. Recall that feasibility is satisfied if
∑

i fi ≤ 1.
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Writing this out we get:

∑
j∈N

fj =
ei

δ
∑

j 6=i ejrj + eiri
+
∑
j 6=i

ej
δ
∑

k 6=j ekrk + ejrj

Taking the partial derivative w.r.t. ei:

∂

∂fi

∑
j∈N

fj =
δ
∑

j 6=i ejrj(
δ
∑

j 6=i ejrj + eiri
)2 −∑

j 6=i

δejri(
δ
∑

k 6=j ekrk + ejrj
)2

Let ei = ej = e and ri = rj = r:

∂

∂fi

∑
j∈N

fj =
δe(n− 1)r(

δ(n− 1)er + er
)2 −∑

j 6=i

δer(
δ(n− 1)er + er

)2 ≡ 0

It follows from Lemma 5 that this is a global maximum. This implies that if there is a sharing rule that

sustains full cooperation as SPE at equal endowments, we can find a feasible sharing rule that sustains

full cooperation for any endowment distribution. Furthermore, as ∂fi
∂rj

< 0, ∀i, j and ∂fi
∂δ < 0, ∀i,

increasing any ri or δ relaxes the constraint. This means that a sharing rule that sustains full cooperation

as SPE for a given endowment also sustains this for any δ̂ > δ or any productivity vector r̂ ≥ r where

the vectors are compared element wise.

Proof for Proposition 2.

Proof. Following Lemma 3, to determine whether any (e, r, δ) allows for cooperation, it suffices to

check if
∑

i f̂i ≤ 1, where f̂ is as defined in the proof of Lemma 3.

Case 1: equal productivities

It follows from Lemma 5 that for equal productivities, the minimum shares f̂ that need to be guar-

anteed to each individual for no deviation to be profitable are strictly concave in e. This means if∑
i f̂i(e) = c ≤ 1, then we can find ê such that

∑
i f̂i(ê) < c. Due to continuity of f̂ in r and δ, we

can find r̂ < r and δ̂ < δ such that still
∑

i f̂
∗
i (ê) < 1 meaning that a sharing rule implementing full

cooperation as SPE for these parameters exists.

Case 2: unequal productivities

Take i, j ∈ N such that eiri ≥ ejrj and ri 6= rj . As productivities are unequal, such i, j necessarily ex-

ist. Furthermore, denote with ê a new endowment allocation that only differs from e in i and j meaning

that êk = ek for all k 6= i, j. As
∑

j ej = 1 for any e, this implies that êi ≡ ei + (ej − êj).

Case 2.a: ri ≥ rj
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Take some êi > ei. Full cooperation at this endowment can be feasibly implemented for δ and r if∑
i f̂i(ê) <

∑
i f̂i(e). This can be written out as:

∑
k 6=i,j

ek
δ
∑

j∈N êjrj + (1− δ)ekrk
+

êi
δ
∑

j∈N êjrj + (1− δ)êiri
+

êj
δ
∑

j∈N êjrj + (1− δ)êjrj

<
∑
k 6=i,j

ek
δ
∑

j∈N ejrj + (1− δ)ekrk
+

ei
δ
∑

j∈N ejrj + (1− δ)eiri
+

ej
δ
∑

j∈N ejrj + (1− δ)ejrj

As by assumption ri ≥ rj , eiri ≥ ejrj and by construction êi > ei, it follows
∑

j∈N êjrj >
∑

j∈N ejrj

and êiri > eiri. Define δ
∑

j∈N ejrj ≡ A. The above inequality holds if the following holds:

∑
k 6=i,j

ek
A+ (1− δ)ekrk

+
êi

A+ (1− δ)êiri
+

êj
A+ (1− δ)êjrj

≤
∑
k 6=i,j

ek
A+ (1− δ)ekrk

+
ei

A+ (1− δ)eiri
+

ej
A+ (1− δ)ejrj

which reduces to:

êi
A+ (1− δ)êiri

+
êj

A+ (1− δ)êjrj
≤ ei
A+ (1− δ)eiri

+
ej

A+ (1− δ)ejrj

or equivalently:

êi
A+ (1− δ)êiri

− ei
A+ (1− δ)eiri

≤ ej
A+ (1− δ)ejrj

− êj
A+ (1− δ)êjrj

This can be re-arranged to:

A ·∆ij(
A+ (1− δ)êiri

)(
A+ (1− δ)eiri

) ≤ A ·∆ij(
A+ (1− δ)ejrj

)(
A+ (1− δ)êjrj

)
where ∆ij ≡ êi − ei = ej − êj . Noting that all factors are positive, this is satisfied if:

(
A+ (1− δ)êiri

)(
A+ (1− δ)eiri

)
≥
(
A+ (1− δ)ejrj

)(
A+ (1− δ)êjrj

)
As by construction êiri > eiri ≥ ejrj > êjrj , this is satisfied.

Case 2.b: ri < rj

As eiri ≥ ejrj by assumption, we can conclude ei > ej . Set êi = ej and êj = ei. Full cooperation can

be sustained at ê if:
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∑
k 6=i,j

ek
δ
∑

j∈N êjrj + (1− δ)ekrk
+

êi
δ
∑

j∈N êjrj + (1− δ)êiri
+

êj
δ
∑

j∈N êjrj + (1− δ)êjrj

<
∑
k 6=i,j

ek
δ
∑

j∈N ejrj + (1− δ)ekrk
+

ei
δ
∑

j∈N ejrj + (1− δ)eiri
+

ej
δ
∑

j∈N ejrj + (1− δ)ejrj

As êj = ei > ej = êi and rj > ri which implies
∑

j∈N êjrj >
∑

j∈N ejrj , the previous inequality

satisfied if the following is satisfied:

êi
A+ (1− δ)êiri

+
êj

A+ (1− δ)êjrj
≤ ei
A+ (1− δ)eiri

+
ej

A+ (1− δ)ejrj

where A ≡ δ
∑

j∈N ejrj . Substituting in êi = ej and êj = ei, we get:

ej
A+ (1− δ)ejri

− ej
A+ (1− δ)ejrj

≤ ei
A+ (1− δ)eiri

− ei
A+ (1− δ)eirj

or equivalently:

(1− δ)e2j (rj − ri)
(A+ (1− δ)ejri)(A+ (1− δ)ejrj)

≤ (1− δ)e2i (rj − ri)
(A+ (1− δ)eiri)(A+ (1− δ)eirj)

As rj > ri and ej < ei, this is satisfied if the following is satisfied:(
A+ (1− δ)ejri

)(
A+ (1− δ)ejrj

)
ej

≥
(
A+ (1− δ)eiri

)(
A+ (1− δ)eirj

)
ei

or equivalently:

(
Aei + (1− δ)eiejri

)(
Aei + (1− δ)eiejrj

)
≥
(
Aej + (1− δ)eiejri

)(
Aej + (1− δ)eiejrj

)
Comparing terms, this holds if Aei > Aej , which is satisfied as ei > ej by assumption.

Lemma 5. The sharing rule f̂ with

f̂k =
ek

δ
∑

j 6=k ejrj + ekrk
, ∀k ∈ N.

for some e, r, and δ is such that
∑

i f̂i is

(i) strictly concave in ek for any rk with rk = r, ∀k;

(ii) strictly convex in rk for any ek with ek = e, ∀k.
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Proof. (i) Note that the sharing rule for a fixed r can be written as

f(e) :=
n∑
k=1

fk(e) =
n∑
k=1

ek
δ
∑

j 6=k ejr + ekr
(11)

By the definition of strict concavity, the following should hold

f(λe + (1− λ)ẽ) > λf(e) + (1− λ)f(ẽ), λ ≥ 0

In addition, a sum of concave functions is a concave function. Hence, it is sufficient to show concavity

of only one function fk(e) for some k. First note that

fk(λe + (1− λ)ẽ) =
λek + (1− λ)ẽk

δ
∑

j 6=k(λej + (1− λ)ẽj)r + (λek + (1− λ)ẽk)r

and

λfk(e) + (1− λ)fk(ẽ) =
λek

δ
∑

j 6=k ejr + (1− δ)ekr
+

(1− λ)ẽk
δ
∑

j 6=k ẽjr + (1− δ)ẽkr

Hence, we need that the following inequality holds

λek + (1− λ)ẽk
δ
∑

j 6=k(λej + (1− λ)ẽj) + (1− δ)(λek + (1− λ)ẽk)
>

λek
δ
∑

j 6=k ej + (1− δ)ek
+

(1− λ)ẽk
δ
∑

j 6=k ẽj + (1− δ)ẽk

Since
∑n

i=1 ei = 1, the inequality can be reduced to

λek + (1− λ)ẽk
λ(δ + (1− δ)ek) + (1− λ)(δ + (1− δ)ẽk)

>
λek

δ + (1− δ)ek
+

(1− λ)ẽk
δ + (1− δ)ẽk

Let us introduce the following substitution:

a := λek

b := (1− λ)ẽk

c := δ + (1− δ)ek
d := δ + (1− δ)ẽk (12)

Then, we can re-arrange the inequality to obtain

(a+ b)cd > (ad+ bc)(λc+ (1− λ)d)⇒

acd+ bcd > λacd+ (1− λ)ad2 + λbc2 + (1− λ)bcd⇒

(1− λ)ad(c− d) > λbc(c− d)

Hence, we need to consider two cases: when c > d and c < d. If c = d, then the inequality is satisfied
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and the statement follows. If c > d, then ek > ẽk and

(1− λ)ad > λbc

Using the substitution (12), we obtain

λek
δ + (1− δ)ek

>
(1− λ)ẽk

δ + (1− δ)ẽk

which is satisfied whenever ek > ẽk. The same argument works for the second case, which completes

the proof of part (i).

(ii) Next, note that the sharing rule for a fixed e can be written as

f(r) :=

n∑
k=1

fk(r) =

n∑
k=1

e

δ
∑

j 6=k erj + (1− δ)erk
(13)

By the definition of strict convexity, the following should hold

f(λr + (1− λ)r̃) < λf(r) + (1− λ)f(r̃), λ ≥ 0

As in (i), it is sufficient to show convexity of only one function fk(r) for some k. First note that

fk(λr + (1− λ)r̃) =
1

δ
∑

(λrj + (1− λ)r̃j) + (1− δ)(λrk + (1− λ)r̃k)

and

λfk(r) + (1− λ)fk(r̃) =
λ

δ
∑
rj + (1− δ)rk

+
1− λ

δ
∑
r̃j + (1− δ)r̃k

After re-arranging the terms in the inequality in the similar manner as in (i) and letting

a := δ
∑

ri + (1− δ)rk

b := δ
∑

r̃i + (1− δ)r̃k

we obtain

ab < (λb+ (1− λ)a)(λa+ (1− λb)⇒

2ab < (a2 + b2)⇒

(a− b)2 < 0

which completes the proof.
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Proof for Theorem 2.

Proof. Suppose first that productivities r are equal across players. Take any endowment e and suppose

without loss of generality that e is ordered such that ei ≤ ei+1. Construct an ė as follows: ê1 = e1 − κ
for some κ ∈ (0, e1), ėn = en + κ, and ėi = ei for all other i ∈ N . Construct a second ë with ë1 = ėn,

ën = ė1, and ëi = ėi for all other i ∈ N . Clearly, endowments ė and ë are more unequal than e. As

productivities are equal, full cooperation achieves the same aggregate return from investment in the joint

project for all these endowments. Furthermore, define the sharing rule ḟ as follows:

ḟk =
ėk

δ
∑

j 6=k ėjrj + ėkrk
, ∀k ∈ N.

Define f̈ equivalently. Furthermore, let f̂ be the equivalent rule for e. Clearly, all three satisfy IC. Further-

more, ė and ë are identical except that ḟ1 and ḟn are interchanged for f̈ . This implies that
∑

i ḟi =
∑

i f̈i.

According to Lemma 5,
∑

i f̂i is strictly concave in e. It follows from strict concavity that since e can be

written as a convex combination of ė and ë, and since
∑

i ḟi =
∑

i f̈i, that
∑

i f̂i >
∑

i ḟi. As whether

or not any sharing rule f can be implemented depends on whether
∑

i fi ≤ 1, and as f̂i is increasing and

continuous in δ, we can conclude that if for some δ,
∑

i f̂i = 1, then for the same δ, we have
∑

i ḟi < 1.

This means there exists a δ̇ < δ such that (ė, r, δ̇) allows for cooperation but (e, r, δ̇) does not. For r,

cooperation is easier to sustain with ė than e, as asserted.

Suppose now that productivities r are not equal across players. Let again endowment e be ordered

such that ei ≤ ei+1. If rn ≥ r1, it follows immediately from the proof of Proposition 2 (Case 2.a)

that setting ė1 = e1 − κ for some κ ∈ (0, e1) and ėn = en + κ, while leaving all other endowments

unchanged, means that for every δ, the corresponding
∑

i ḟi <
∑

i f̂i. Following the same argument as

above, we can thus find a δ̂ such that (ė, r, δ̇) allows for cooperation but (e, r, δ̇) does not.

If instead If rn < r1, we can construct an endowment ė as follows: ėn = e1−κ for some κ ∈ (0, e1) and

ė1 = en + κ, and ei = ėi otherwise. Again, ė is more unequal than e. It follows from from the proof of

Proposition 2 (Case 2.b) that we can find a δ̇ such that (ė, r, δ̇) allows for cooperation but (e, r, δ̇) does

not. The result follows.

Proof for Proposition 3.

Proof. The proof of Theorem 1 already derived such an ε for an (arbitrarily chosen) player 1. We can

apply the same argument to obtain an ε, which - given r and δ - applies to all i not just i = 1.

Recall that the proof of Theorem 1 considered sequences converging to e where e1 = 1 and ei 6=1 = 0. We

can construct such a limiting endowment for all i: Let e(i) be the endowment vector where ei = 1. For

each of these, we get some Kε∗ which we denote by Kε∗(i). Then we can define ε ≡ mini∈N{Kε∗(i)}.
Given r and δ, if for any endowment e we have ej > 1 − ε for some j ∈ N , then by definition the
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corresponding shares are such that
∑

i f̂i < 1 and cooperation can be sustained in equilibrium. This

implies any (e, r, δ) with ei > 1− ε, for some i, allows for cooperation.

Proof for Lemma 4.

Proof. According to Assumption 1,
∑

i r
−1
i > 1. As (e, r, δ) allows for cooperation, f̂ sustains full

cooperation. From the definition of f̂ , we can see that for all i, f̂i is strictly increasing in δ. Therefore, if

f̂ can sustain cooperation in equilibrium, so can f ∗ as by definition δmin ≤ δ. Furthermore, if δmin > 0,

then
∑

i fi
∗ = 1. If not and instead

∑
i fi
∗ < 1, it follows from continuity and monotonicity in δ that

we could find a δ < δmin that would still allow for cooperation, which contradicts the definition of δmin.

For δmin > 0, it must be that at δ = 0:∑
i∈N

ei
δ
∑

j 6=i ejrj + eiri
=
∑
i∈N

ei
eiri

=
∑
i∈N

1

ri
> 1

which is satisfied by assumption.

Proof for Proposition 5.

Proof. It follows from Lemma 3 and Lemma 4 that if cooperation can be implemented with f ∗ it can

also be implemented with the corresponding f̂ . Full cooperation under equal sharing can be implemented

as long as the minimum share that needs to be awarded to each agent does not exceed 1
n . Formally, we

require:

max
{
f̂i

}
i∈N
≡ max

{ ei
δ
∑

j 6=i ejrj + eiri

}
i∈N
≤ 1

n

For generic e and r, ei
δ
∑

j 6=i ejrj+eiri
6= ek

δ
∑

j 6=i ejrj+ekrk
for k 6= i. For those parameters, there exist some

i, k ∈ N such that
ei

δ
∑

j 6=i ejrj + eiri
>

ek
δ
∑

j 6=i ejrj + ekrk

And thus
∑

j∈N f̂j < nf̂i ≤ 1. As f̂i is continuous and decreasing in δ, we can find δ̃ ≤ δ such that

max
{
f̃j

}
j∈N

= f̃∗i =
1

n
.

where the first equality follows from the fact that δ scales each share f̂i in an order-preserving way,

meaning that for any δ̃ < δ, player i still needs to be awarded the largest share. Under equal sharing,

full cooperation is (just) feasible for these parameters, but not feasible for any δ < δ. But as generically∑
j∈N f̂j < nf̂i, it follows that

∑
j∈N f̃

∗
j < nf̃∗ = 1 and thus δ̃ > δmin. This implies that full

cooperation can be implemented under f ∗. Due to continuity we can find r̃j < rj (and δ < δ̃ for which

full cooperation can still be implemented as SPE with the sharing rule f ∗ while this is not the case for

equal sharing.
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Proof for Proposition 4.

Proof. Note that equation (5) can be re-written as

δmin

(
f∗i
∑
k 6=i

ekrk

)
︸ ︷︷ ︸

cost of punishment for defection

−

private benefit from defection︷ ︸︸ ︷(
ei − f∗i eiri

)
= 0

We can further re-arrange these conditions as

f∗i (ei − eiri) + ei
∑

j 6=i f
∗
j∑

k 6=i ekrk
= δminf

∗
i

Hence, accounting for all players, we obtain a system of n linear equations given by

Φf∗ = δminf
∗

where matrix Φ is such that

φij =


−ei(ri − 1)∑

k 6=i ekrk
, i = j

ei∑
k 6=i ekrk

, i 6= j

Thus, δmin is an eigenvalue of Φ and f ∗ is the corresponding eigenvector such that
∑
f∗i = 1. Moreover,

δmin is the largest eigenvalue of Φ. Matrix Φ can be interpreted as the matrix of the cost of cooperation

weighted by contributions of others. Since it follows from our results that for given e and r we can always

find δ such that cooperation can be sustained, then matrix Φ always has an eigenvalue δmin ∈ (0, 1).

Proof for Proposition 6.

Proof. From

Φf ∗ = δminf
∗

we see that equal sharing is an optimal sharing rule if and only if Φ is a row-sum-constant matrix. Then,

we require

−ei(ri − 1) + (n− 1)ei − δminekrk = δmin

∑
j 6=i,k

ejrj , ∀i

Hence, for any two players i and k the following has to be true

−ei(ri − 1) + (n− 1)ei − δminekrk = −ek(rk − 1) + (n− 1)ek − δmineiri
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which can be re-arranged as
ei
ek

=
n− (1− δmin)ri
n− (1− δmin)rk

, ∀i, k (14)

If ri = rk, then ei = ek for all players. For ri 6= rk, since for any given δ there is a unique endowment

distribution satisfying
ei
ek

=
n− (1− δ)ri
n− (1− δ)rk

, ∀i, k (15)

we can conclude that the endowment distribution satisfying (14) is not generic.

Proof for Proposition 7.

Proof. For fk ∗ to be equal to g∗k we need

δmin

∑
j 6=k

ejrj + ekrk = 1. (16)

If rk = r, ∀k, then this condition can be re-written as

ek =
1− δminr

r − δminr
, ∀k,

which implies that ek = 1/n.

Assume now that productivities of players differ. Assume also that for some k and i, condition (16) is

satisfied. Then,

δmin

∑
j 6=i,k

ejrj + δminekrk = 1− eiri

δmin

∑
j 6=i,k

ejrj + δmineiri = 1− ekrk

and hence
ei
ek

=
rk
ri
.

Hence, for any given productivities of players, there is a unique endowment distribution for which g∗k =

fk
∗ for all k.

Proof for Proposition 8.

Proof. If rk = r, ∀k, then fk ∗ = h∗k if

ek =
1− δminr

r − δminr
, ∀k,
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which implies that ek = 1/n.

Now consider ri 6= rk for at least some i, k. First, consider the sharing rule f̂k for some δ, then we need

to compare

h∗k =
ekrk∑

j 6=k e
′
jrj + ekrk

fk
∗ =

ek
δ
∑

j 6=k e
′
jrj + ekrk

Assume that these rules are equal for some k. Then, for h∗k = fk
∗ for all k, we need that

ekrk
eiri

=
(1− δrk)ri
(1− δri)rk

If the shares are equal, then either change in productivities or endowment re-distribution has to have

to same effect on these rules. That is, if we increase the productivity for player k, then the following

equation has to hold
ek(rk + ε)

eiri
=

(1− δ(rk + ε))ri
(1− δri)(rk + ε)

,

and while the left-hand side of the equation is increased, the right-hand side is necessarily decreased,

which is a contradiction. Similarly, assume we increase the endowment of player k. For the endowment

re-distribution to have the same effect on both rules we need

(ek + εk)rk
(ei − εi)ri

=
(1− δrk)ri
(1− δri)rk

=
ekrk
eiri

,

which can be re-written as
(ek + εk)

(ei − εi)
=
ek
ei

and thus

εkei = −εiek,

which is a contradiction. This indicates that for a given set of productivities and δ, there exists a unique

endowment distribution such that h∗k = fk
∗, ∀k defined as

ekrk
eiri

=
(1− δrk)ri
(1− δri)rk

By continuity of δmin, there exists only one endowment distribution ê such that h∗k = fk
∗, ∀k defined

as
êkrk
êiri

=
(1− δminrk)ri
(1− δminri)rk
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Fischbacher, U., S. Gächter, and E. Fehr (2001). Are people conditionally cooperative? evidence from a

public goods experiment. Economics Letters 71(3), 397–404.

FitzRoy, F. R. and K. Kraft (1987). Cooperation, productivity, and profit sharing. Quarterly Journal of

Economics 102(1), 23–35.

Flannery, K. (2012). The creation of inequality: how our prehistoric ancestors set the stage for monarchy,

slavery, and empire. Harvard University Press.

Gurven, M. (2004). To give and to give not: The behavioral ecology of human food transfers. Behavioral

and Brain Sciences 27(4), 543.

Hauser, O. P., C. Hilbe, K. Chatterjee, and M. A. Nowak (2019). Social dilemmas among unequals.

Nature 572(7770), 524–527.

Heap, S. P. H., A. Ramalingam, S. Ramalingam, and B. V. Stoddard (2015). ‘doggedness’ or ‘disengage-

ment’? an experiment on the effect of inequality in endowment on behaviour in team competitions.

Journal of Economic Behavior & Organization 120, 80–93.

Hilbe, C., L. A. Martinez-Vaquero, K. Chatterjee, and M. A. Nowak (2017). Memory-n strategies of

direct reciprocity. Proceedings of the National Academy of Sciences 114(18), 4715–4720.

Hirshleifer, J. (1983). From weakest-link to best-shot: The voluntary provision of public goods. Public

Choice 41(3), 371–386.

37



Johnson, A. W. and T. K. Earle (2000). The evolution of human societies: from foraging group to

agrarian state. Stanford University Press.

Jones, B. F. (2021). The rise of research teams: Benefits and costs in economics. Journal of Economic

Perspectives 35(2), 191–216.

Jones, B. F., S. Wuchty, and B. Uzzi (2008). Multi-university research teams: Shifting impact, geography,

and stratification in science. Science 322(5905), 1259–1262.

Kandel, E. and E. P. Lazear (1992). Peer pressure and partnerships. Journal of Political Economy 100(4),

801–817.

Karakostas, A., M. G. Kocher, D. Matzat, H. A. Rau, and G. Riewe (2021). The team allocator game:

Allocation power in public goods games. CEGE Discussion Paper.

Kobayashi, H., K. Ohta, and T. Sekiguchi (2016). Optimal sharing rules in repeated partnerships. Journal

of Economic Theory 166, 311–323.

Kugler, T., A. Rapoport, and A. Pazy (2010). Public good provision in inter-team conflicts: effects of

asymmetry and profit-sharing rule. Journal of Behavioral Decision Making 23(4), 421–438.

Li, X. and D. Thirumalai (2019). Share, but unequally: a plausible mechanism for emergence and

maintenance of intratumour heterogeneity. Journal of the Royal Society Interface 16(150), 20180820.

Mas-Colell, A., M. D. Whinston, J. R. Green, et al. (1995). Microeconomic theory, Volume 1. Oxford

university press New York.

Mattison, S. M., E. A. Smith, M. K. Shenk, and E. E. Cochrane (2016). The evolution of inequality.

Evolutionary Anthropology: Issues, News, and Reviews 25(4), 184–199.

McGinty, M. and G. Milam (2013). Public goods provision by asymmetric agents: experimental evi-

dence. Social Choice and Welfare 40(4), 1159–1177.

Moulin, H. (2002). Axiomatic cost and surplus sharing. Handbook of social choice and welfare 1,

289–357.

Newton, J. (2017). Shared intentions: The evolution of collaboration. Games and Economic Behav-

ior 104, 517–534.

Nitzan, S. (1991). Collective rent dissipation. Economic Journal 101(409), 1522–1534.

Nitzan, S. and K. Ueda (2011). Prize sharing in collective contests. European Economic Review 55(5),

678–687.

Olson, M. (1965). Logic of collective action: Public goods and the theory of groups (Harvard economic

studies. v. 124). Harvard University Press.

38



Radner, R., R. Myerson, and E. Maskin (1986). An example of a repeated partnership game with dis-

counting and with uniformly inefficient equilibria. Review of Economic Studies 53(1), 59–69.

Ray, D., J.-M. Baland, and O. Dagnelie (2007). Inequality and inefficiency in joint projects. Economic

Journal 117(522), 922–935.

Van der Heijden, E., J. Potters, and M. Sefton (2009). Hierarchy and opportunism in teams. Journal of

Economic Behavior & Organization 69(1), 39–50.

Van Dijk, E. and H. Wilke (1995). Coordination rules in asymmetric social dilemmas: A comparison

between public good dilemmas and resource dilemmas. Journal of Experimental Social Psychol-

ogy 31(1), 1–27.

39


